GOXS-1512-40D 1.25Gbps SFP Optical Transceiver, 40km Reach #### **Features** - Dual data-rate of 1.25Gbps/1.063Gbps operation - 1550nm DFB laser and PIN photo detector for 40km transmission - Compliant with SFP MSA and SFF-8472 with duplex LC receptacle - Digital Diagnostic Monitoring: - Internal Calibration or External Calibration - Compatible with SONET OC-24-LR - Compatible with RoHS - +3.3V single power supply - Operating case temperature: - Temp: 0 to +70°C #### **Applications** - Gigabit Ethernet - Fiber Channel - Switch to Switch interface - Switched backplane applications - Router/Server interface - Other optical transmission systems #### Description The SFP transceivers are high performance, coste**e**ffive modules supporting dual data-rate of 1.25Gbps/1.0625Gbps and 40km transmission distance with SMF. The transceiver consists of three sections: a DFB laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU controlit. All modules satisfy class I laser safety requirements. The transceivers are compatible with SFP Multi-Souce Agreement (MSA) and SFF-8472. For further information, please refer to SFP MSA. # **Absolute Maximum Ratings** **Table 1 - Absolute Maximum Ratings** | Parameter | Symbol | Min | Max | Unit | |---------------------|--------|------|-----|------| | Supply Voltage | Vcc | -0.5 | 4.5 | V | | Storage Temperature | Ts | -40 | +85 | °C | | Operating Humidity | - | 5 | 95 | % | # **Recommended Operating Conditions** **Table 2 - Recommended Operating Conditions** | Parameter | | Symbol | Min | Typical | Max | Unit | |----------------------------|------------|--------|------|---------|------|------| | Operating Case Temperature | Industrial | Tc | 0 | | +70 | °C | | Power Supply Voltage | | Vcc | 3.13 | 3.3 | 3.47 | V | | Power Supply Current | | Icc | | | 300 | mA | | Data Rate | | | | 1.25 | | Gbps | # **Optical and Electrical Characteristics** GOXS-1512-40D: (DFB and PIN, 1550nm, 40km Reach) Table 3 - Optical and Electrical Characteristics | Parameter | | Symbol | Min | Typical | Max | Unit | Notes | |------------------|--------------------|-----------------|---------|---------|------|------|-------| | | | | Transmi | tter | | | | | Centre V | Vavelength | λς | 1480 | 1550 | 1580 | nm | | | Spectral V | Vidth (-20dB) | Δλ | | | 1 | nm | | | Side Mode St | uppression Ratio | SMSR | 30 | | | dB | | | Average (| Output Power | Pout | -6 | | -2 | dBm | 1 | | Extino | tion Ratio | ER | 9 | | | dB | | | Optical Rise/Fal | I Time (20%~80%) | tr/tf | | | 0.26 | ns | | | Data Input S | wing Differential | Vin | 400 | | 1800 | mV | 2 | | Input Differe | ntial Impedance | Z _{IN} | 90 | 100 | 110 | Ω | | | TV Dischle | Disable | | 2.0 | | Vcc | V | | | TX Disable | Enable | | 0 | | 0.8 | V | | | TV F14 | Fault | | 2.0 | | Vcc | V | | | TX Fault | Normal | | 0 | | 0.8 | V | | | | | | Receiv | er | | | | | Centre V | Vavelength | λс | 1260 | | 1610 | nm | | | Receive | r Sensitivity | | | | -24 | dBm | 3 | | Receive | r Overload | | -3 | | | dBm | 3 | | LOS De-Assert | | LOSD | | | -24 | dBm | | | LOS Assert | | LOSA | -35 | | | dBm | | | LOS Hysteresis | | | 1 | | 4 | dB | | | Data Output S | Swing Differential | Vout | 370 | | 1800 | mV | 4 | | | .OS | High | 2.0 | | Vcc | V | | | L | .03 | Low | | | 0.8 | V | | #### Notes: - 1. The optical power is launched into SMF. - 2. PECL input, internally AC-coupled and terminated. - 3. Measured with a PRBS 2⁷-1 test pattern @1250Mbps, BER ≤1×10⁻¹². - 4. Internally AC-coupled. ## **Timing and Electrical** **Table 4 - Timing and Electrical** | Parameter | Symbol | Min | Typical | Max | Unit | |---|----------------|-----|---------|-----|------| | Tx Disable Negate Time | t_on | | | 1 | ms | | Tx Disable Assert Time | t_off | | | 10 | μs | | Time To Initialize, including Reset of Tx Fault | nit t_i | | 300 | ms | | | Tx Fault Assert Time | t_fault | | | 100 | μs | | Tx Disable To Reset | t_reset | 10 | | | μs | | LOS Assert Time | t_loss_on | | | 100 | μs | | LOS De-assert Time | t_loss_off | | | 100 | μs | | Serial ID Clock Rate | f_serial_clock | | | 400 | KHz | | MOD_DEF (0:2)-High | V _H | 2 | | Vcc | V | | MOD_DEF (0:2)-Low | VL | | | 0.8 | V | ## **Diagnostics** Table 5 – Diagnostics Specification | Parameter | Range | Unit | Accuracy | Calibration | | |--------------|------------|------|----------|---------------------|--| | Temperature | 0 to +70 | | ±3°C | Internal / External | | | remperature | | C | 15 0 | internal / External | | | Voltage | 3.0 to 3.6 | V | ±3% | Internal / External | | | Bias Current | 0 to 100 | mA | ±10% | Internal / External | | | TX Power | -6 to +2 | dBm | ±3dB | Internal / External | | | RX Power | -26 to -3 | dBm | ±3dB | Internal / External | | # **Digital Diagnostic Memory Map** The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA). The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring. The digital diagnostic memory map specific data field defines as following. 2 wire address 1010000X (A0h) O Serial ID Defined by SFP MSA (96 bytes) 95 Vendor Specific (32 bytes) 127 Reserved in SFP MSA (128 bytes) | | 2 wire address 1010001X (A2h | | | | | | |------------|--|--|--|--|--|--| | 0
55 | Alarm and Warning
Thresholds (56 bytes) | | | | | | | 95 | Cal Constants
(40 bytes) | | | | | | | | Real Time Diagnostic
Interface (24 bytes) | | | | | | | 119
127 | Vendor Specific (8 bytes) | | | | | | | | User Writable
EEPROM (120 bytes) | | | | | | | 247 | | | | | | | | 255 | Vendor Specific (8 bytes) | | | | | | 255 ## **Pin Definitions** Pin Diagram | l | | | | | | |----|--|---------------|--|--|--| | 20 | VeeT | 1 VeeT | | | | | 19 | TD- | 2 TxFault | | | | | 18 | TD+ | 3 Tx Disable | | | | | 17 | VeeT | 4 MOD-DEF(2) | | | | | 16 | VccT | 5 MOD-DEF(1) | | | | | 15 | VccR | 6 MOD-DEF(0) | | | | | 14 | VeeR | 7 Rate Select | | | | | 13 | RD+ | 8 LOS | | | | | 12 | RD- | 9 VeeR | | | | | 11 | VeeR | 10 VeeR | | | | | | Top of Board Board (as viewed thru top of board) | | | | | Pin Descriptions | Pin | Signal Name | Description | Plug Seq. | Notes | |-----|------------------|------------------------------|--------------------|--------| | 1 | V _{EET} | Transmitter Ground | 1 | | | 2 | TX FAULT | Transmitter Fault Indication | 3 | Note 1 | | 3 | TX DISABLE | Transmitter Disable | 3 | Note 2 | | 4 | MOD_DEF(2) | SDA Serial Data Signal | 3 | Note 3 | | 5 | MOD_DEF(1) | SCL Serial Clock Signal | 3 | Note 3 | | 6 | MOD_DEF(0) | TTL Low | 3 | Note 3 | | 7 | Rate Select | Not Connected | 3 | | | 8 | LOS | Loss of Signal | 3 | Note 4 | | 9 | V _{EER} | Receiver ground | 1 | | | 10 | VEER | Receiver ground | 1 | | | 11 | V _{EER} | Receiver ground | 1 | | | 12 | RD- | Inv. Received Data Out | 3 | Note 5 | | 13 | RD+ | Received Data Out | 3 | Note 5 | | 14 | V _{EER} | Receiver ground | 1 | | | 15 | Vccr | Receiver Power Supply | 2 | | | 16 | Vccт | Transmitter Power Supply | 2 | | | 17 | V _{EET} | Transmitter Ground | 1 | | | 18 | TD+ | Transmit Data In | Transmit Data In 3 | | | 19 | TD- | Inv. Transmit Data In | 3 | Note 6 | | 20 | V _{EET} | Transmitter Ground | 1 | | #### Notes: Plug Seq.: Pin engagement sequence during hot plugging. - 1) TX Fault is an open collector output, which shold be pulled up with a 4.7k~10lΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normabperation; Logic 1 indicates a laser fault of somekind. In the low state, the output will be pulled to less than 0.8V. - 2) TX Disable is an input that is used to shut dowline transmitter optical output. It is pulled up then the module with a $4.7k\sim10k\Omega$ resistor. Its states are: Low (0 to 0.8V): Transmitter on (>0.8V, < 2.0V): Undefined High (2.0 to 3.465V): Transmitter Disabled Open: Transmitter Disabled - 3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a 4.7k~10kΩ resistor on the host board. The pull-up voltage shall be VccT or VccR. - Mod-Def 0 is grounded by the module to indicate that the module is present Mod-Def 1 is the clock line of two wire serial interface for serial ID Mod-Def 2 is the data line of two wire serial interface for serial ID - 4) LOS is an open collector output, which should bepulled up with a 4.7k~10kΩ resistor. Pull up voltage between 2.0V and Vcc+0.3V. Logic 1 indicates loss of signal; Logic 0indicates normal operation. In the low state, the output will be pulled to less than 0.8V. - 5) RD-/+: These are the differential receiver outpts. They are internally AC-coupled 100 differentialines which should be terminated with 100Ω (differential) at the user SERDES. - 6) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differentiallines with 100Ω differential termination inside the module. #### **Recommended Interface Circuit** ## **Mechanical Dimensions** # **Ordering information** | Part Number | Product Description | | | | | |---------------|---------------------|-----------|-----|----------------------------------|--| | GOXS-1512-40D | 1550nm, | 1.25Gbps, | LC, | 40km⁄Q°CQ°C wi th DDM | |